Abstract The main aim of the present work was described quantitative analysis of microstructure of by electron backscatter diffraction (EBSD) technique of dispersion strengthened Al-Al4C3 material. It is a technique by which SEM can be used to evaluate the microstructure by crystallographic analysis based on the acquisition of diffraction patterns from bulk samples. Mechanical properties of dispersion strengthened materials depend on microstructural and substructural parameters, their changes at elevated temperatures and also on grain and subgrain matrix structures. From this point of view the most important microstructural parameters of matrix are size, shape, and misorientation of grains and subgrains and their annealing behaviour. Realized microstructure analyses of Al-Al4C3 material were evaluated from two experimental specimens annealed at different temperatures and times. Obtained microstructures were evaluated and compared. Annealing process has influenced the grain size, shape and orientation of experimental material. Grains size and angle grain boundaries were evaluated from acquired crystal orientation maps.