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Abstract 
There is one subsistent group of relations based on theoretical knowledge which are used for the 
average contact pressure calculation on smooth rolls. The second group of relations is generated 
by empirical equations valid in restricted area of application. The new hypothesis of contact 
pressure distribution in dependence on rolling conditions is presented in this submission. A new 
term of non-dimensional value has been defined as relative stress. An equation for the average 
contact pressure calculation, presented by author moves the mathematical theory of rolling 
closer to practice. The relative stress is dependant on ratio ld/hav, reduction intensity and friction 
coefficient. The equation of relative stress in average contact pressure calculation allows for the 
presence of a minimum. The verification of new hypothesis of contact pressure distribution is in 
good consent with data measured in rolling practice.  
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1 Introduction  
A derivation of basic differential equation of power balance in a rolling zone for flat rollers is 
possibly found in common books dealing with rolling as Mielnik [1], Kollerová [2] and Pernis 

[3]. The geometry of zone in rolling is marked on Fig.1; 
simultaneously in general position an element is drawn 
and dimensioned. The stress impacting on this element is 
drawn on Fig.2. Description of quotation stated on Fig.1 
and Fig.2 are following: 
 
σn        – normal contact stress  
τ          – shear stress  
σx , σy  – principal stress (σ3, σ1) 
σa        – actual resistance to deformation 
x ,y      – element coordinates  
dx, dy  – coordinate differentials x and y  
α         – gripping angle 
αn        – angle of neutral point  
ld          – length of contact arc 
h0 , h1  – thickness before and after deformation 
∆h       – absolute reduction 

 
 

 
Fig.1 Determination of geometric 

relationships 
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ε         – relative reduction 
f          – friction coefficient 
R         – radius of rollers  
 
Based on forces affecting the selected element, a basic 
differential equation of roller pressure is derived for the 
ideal state with allowance for the forward and backward 
slip. The equation of plasticity used is axn σσσ =− , 
while implementing the assumption of principal stress 

ny σσ =&  and shear stress nσfτ ⋅= . Equation 
describing stresses relationship in rolling gap has a 
form: 
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General solution of differential eq. (1) is mentioned 
by Brzobohatý [4] in the form 
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Where C represents integration constant, which needs to be defined from boundary conditions. 
The contact arc is mathematically described by equation of a circle. After circle equation 
nomination and its differentials into the differential eq. (1), remains only as a function of 
coordinate x alone with direct stress, that is x),f(σσ nn =′ . The solution of such differential 
equation is analytically unknown. In the literature is possible to find more solutions of the 
differential eq. (1), where authors establish in the equation certain simplifications. The simplest 
solution was introduced by Korolev [5], while the contact arc (BA) is substituted by poly line 
(BCC‘A), see Fig.3 – curve 1. A more particular solution was introduced by Tselikov [6]. 
Contact arc (BA) has been substituted by straight line (BA), Fig.3 – curve 2. However, 
implemented simplifications can not permit precise description of normal contact stress 
distribution acquired by measuring forces on rolling mills.  
 
 

2 Solution of differential equation  
The aim of this subscription is to further approximate the mathematical theory of rolling with 
practice. The solution reposes in substitution of circle arc (BA) meeting rolling material by the 
parabola (BA), Fig.3 curve – 3, allowing the eq. (1) to be integrated [7]. The parabola equation 
is constructed in the way that it runs through point B and has vertex in point A. 
 

baxy 2 +=                   (3) 
 

where 
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H V  
 

Fig.2 Determination of stresses 
acting on the element: H- 
horizontal, V-vertical  

 
 

Fig.3 The contact Arc 
Approximation: 1- poly line, 
2- line, 3- parabola 
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Tselikov [6] substituted length variable x, by angular variable u according to substitution 
 

utg
a

b
x  ⋅=                   (6) 

 

Parabola eq. (3) after application of new variable u assumes the form 
 

( )1utgby 2 +⋅=                    (7) 
 

Solution of differential eq. (2) needs definition of differential dx  and ratio dx/y  
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Calculation of first integral for eq. (2) 
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Where constant m is defined from relation 
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For second integral is needed to define differential dy and ratio dy/y  
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Transformation of second integral on variable u  
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After establishing of a new variable u into second integral in eq. (2) a form is acquired, which 
according to [8] was given by Tselikov  
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Fraction under root represents relative deformation ε. In eq. (15) top signs (+, –) in exponential 
functions are valid for zone of forward slip and bottom signs (–, +) are valid for zone of 
backward slip. In eq. (15) it is needed to determine the function integral emu.tg u. This integral 
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can be determined under the assumption uug =&t . This inaccuracy can be allowed for   in small 
and medium deformation values. For zone of backward slip, eq. (15) after reduction will have 
the form 
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After integral calculation  
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where: CB is an integral constant, which is for the zone of backward slip determined from 
conditions in point B (see Fig.1). For x=ld from equation of plasticity axnB σσσ =− , where 
σx=0 (without backward tension), results σnB=σa. Value u=u0  for x=ld results from eq. (16)  
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After substituting of boundary conditions in point B into eq. (18) integral constant is determined  
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After substituting of integral constant CB into eq. (18) is determined an equation for the process 
contact stress σnB calculation in the zone of backward slip 
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For the zone of forward slip will be used the equation  
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After integration 
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where CF is integral constant, which is for the zone of forward slip determined by conditions in 
point A (see Fig.1). For x=0 from equation of plasticity axnF σσσ =− , where σx=0 (without 
forward tension), results σnF=σa. Value u=0 for x=0 results from eq. (16) 
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After substituting of integral constant CF into eq. (23) is determined an equation for the process 
contact stress σnF  calculation in the zone of forward slip  
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By this equation in Tselikov terminates his interpretation regarding solution of differential eq. 
(1) and contact pressure calculation. From literature, the calculation of average contact pressure 
σn,av  is not known from equations (21) and (25).  
 
 

3 Neutral section 
Based on present observations, the author submits a deduction of equation for the average 
contact pressure σn,av calculation, which requires position determination of a neutral point. In 
general, the neutral point N (see Fig.3) is determined by comparison of right sides of equations 
(21) and (25). Value u=un  is in this point determined by section margin in the zone of backward 
and forward slip (neutral point)   
 

( ) ( )nnFnnB uσuσ =                (26) 
 

Solitary coordinate xn in these equations represents the variable un, according to eq. (16) 
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The particular comparison of right sides of equations (21) a (22) results in transcendental 
equation dissolution  
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From this equation it is needed to express the variable un. By modification and gradual reduction 
of equation in a way that constants are concentric into brackets  
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Fig.4 Dependence of the neutral value un on 

constant m  and deformation 

Fig.5 Convergence ratio un/u0 to the value 0.5 
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Solitary value un is expressed by explicit function 0)uε,F(m, n = . Therefore, to determine the 
value un , a graph given on Fig.4. has been worked out by numerical methods. A ratio of neutral 
value un to value u0 with the value growth m converges to 0.5, see Fig.5 
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4 Average normal contact stress  
Representation of the contact pressure process along the contact act is presented on Fig.6. 
Average normal contact stress σn,av  is determined as average integral value of variable u in the 
interval >∈< 0u 0;u . The calculation needs to be implemented independently for the zone of 
backward and forward slip. Zone of forward slip σnF(u) eq. (25), for u in the interval 

>∈< nu 0;u . Zone of backward slip σnB(u) eq. (21), for u in the interval >∈< 0u ;uu n  
 

[ ]BF

nu

0

u

nu

nBnF

u

0

navn, II
u

1
du(u)σdu(u)σ

u

1
du(u)σ

u

1
σ

0

0

0

0

0

+⋅=













⋅+⋅⋅=⋅⋅= ∫ ∫∫          (31) 

 

 
Fig.6 Average normal contact stress �n,av 

 
 
An integration boundary un represents a value which determines the position of a neutral point 
and is defined by the explicit eq. (29). The value of integration boundary u0 is given by the eq. 
(19). For eq. (31) we will determine integrals IF a IB  
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After substituting equations (32) and (33) into eq. (31) and a mathematical modification we 
acquire an equation which describes the average normal contact stress σn,av  
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For practical use is the eq. (34) expressed as a relative stress σ , which states ratio of the average 
normal stress σn,av to actual deformation resistance σa that is aavn, /σσσ = . The determination of 

actual deformation resistance is described in [9-11]. 
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A visualization of the eq. (35) presented in graph on Fig.7. Curves in zone 0<m<1 are not well 
readable, therefore on Fig.8 is given an expansion of this zone −σ function, eq. (35) is in the 
point m=0 intermittent. The visualization is implemented in dependence on value m, while the  
 

  

Fig.7 Dependence of the neutral value un on 

constant m  and deformation 

Fig.8 Convergence ratio un/u0 to the value 0.5 

 
 

relative reduction ε is a parameter. As can be seen from Fig.8, −σ function has a local 
minimum, what is in accordance with practical measurements of average contact pressure. With 
a reduction growth the position of local minimum −σ function decreases and moves towards 
higher values m. More detailed description of properties of −σ function is presented in [12,13]. 
Empirical equations describing −σ function are well submitted by Hajduk and Konvičný [14]. 
Empirical functions of relative stress, that means of −σ function are designed in dependence 

ε),/h(lσσ avd= , however most often in form )/h(lσσ avd= . Such dependence is described by 
Rusz et all [15], where measured data account for the local minimum, proved by eq. (35). 
Validity verification of the eq. (34) has been implemented on measured data from publication 
Kvačkaj et all [16]. Under cold rolling sheet has been rolled with the entry thickness of h0=0.65 
mm, on one pass. The material was dynamo steel C-Si. The roll diameter 210 mm. 
Circumferential velocity 0.66 m/s. Dependence of measured and calculated results according to 
eq. (34) in dependence on ratio ld/hav is presented on Fig.9. The graph is simultaneously for 
comparison completed with values of the average normal stress calculated according to Korolev, 
Tselikov and author (eq. 34). The calculated values of contact pressure according to Tselikov are 
by 50 % lower than the measured [16] in gross proportion of ratio ld/hav. Contact pressure 
calculated according to equation (34) and Korolev has a faster tendency of growth than the 
actual measured values in [16]. All theoretical calculations of contact pressure are strongly 
dependant on correct estimation of friction coefficient. For the calculation of contact pressure in 
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given proportion of ratio ld/hav on Fig.9 is more suitable to use the equation (34) or according to 
Korolev. 
 
 

 
Fig.9 Average contact stress σn,av measured and calculated 

 
 

5 Conclusion 
Present theories, describing calculation of the average normal stress are based on certain 
simplified assumptions. This causes significant differences between the theory and measured 
data. The submitted contribution increases concurrence of mathematical theory of rolling with 
the measured values of relative stress. Main contribution of the new hypothesis of the division of 
contact pressure rests in the fact that it theoretically proves the existence of the local minimum 
in the average contact pressure. The minimum is not a constant point, yet it is dependant on 
relative deformation intensity. Equation (35), which describes the relative stress, is function in 
the form f)ε, ,/h(lσσ avd= . In comparison with empirical functions, −σ function allows also for 
the friction coefficient impact on relative stress. Tselikov in [6] for the calculation of relative 
stress at hot rolling in dependence on ratio ld/hav suggested 3 equations. Equation (35) solves the 
calculation of the average contact pressure in complex measure of ratio ld/hav. The report brings 
new knowledge in the area of mathematical theory of rolling.  
 
 

Translated from Slovak by Ida Píšová. 
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