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Abstract

There is one subsistent group of relations baseitieoretical knowledge which are used for the
average contact pressure calculation on smoot. rbile second group of relations is generated
by empirical equations valid in restricted areaapplication. The new hypothesis of contact
pressure distribution in dependence on rolling @i is presented in this submission. A new
term of non-dimensional value has been definecelmive stress. An equation for the average
contact pressure calculation, presented by authmvem the mathematical theory of rolling
closer to practice. The relative stress is depenolamatiol4/h,,, reduction intensity and friction
coefficient. The equation of relative stress inrage contact pressure calculation allows for the
presence of a minimum. The verification of new Hyyesis of contact pressure distribution is in
good consent with data measured in rolling practice
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1 Introduction

A derivation of basic differential equation of pawmalance in a rolling zone for flat rollers is
possibly found in common books dealing with rolliag Mielnik [1], Kollerova [2] and Pernis
[3]. The geometry of zone in rolling is marked Biy.1;
simultaneously in general position an element igwar
and dimensioned. The stress impacting on this eleise
drawn onFig.2. Description of quotation stated dtig.1
andFig.2 are following:

Oh — normal contact stress
T — shear stress
oy, g, — principal stressd, 1)
o, — actual resistance to deformation
X,y —element coordinates
dx, dy — coordinate differentials andy
a — gripping angle
an — angle of neutral point
Fig.1 Determination of geometric Iy _ Iength of contact arc

lationshi ; i
relationships ho , hy — thickness before and after deformation

4h — absolute reduction
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£ — relative reduction
s Jon Ty fou — friction coefficient
ihs ZCP R — radius of rollers
Ox+dCx Ox Tcy Based on forces affecting the selected elemenasicb
dx 1T differential equation of roller pressure is derivied the
dx ideal state with allowance for the forward and lveaid
L, o |~ slip. The equation of plasticity usedosis—o, =0,,

while implementing the assumption of principal stre
Fig.2 Determination of stresses 0y =0, and shear stressz=fl4,. Equation

acting on the element: H- describing stresses relationship in rolling gap kas
horizontal, V-vertical

form:
S| .
ex ! = %—&ﬂi—i@-nzo
3chr:_-_\ dx y dx vy
I 1)
o N A Generalsolution of differential eq(1) is mentioned
& Cy, 5 o l by Brzobohaty [4] in the form
'ra' i =
= o[ o et
Fig.3 The contact Ac o —@d¥ C+J-_6@ y [dly 2)
Approximation: 1- poly line, n y

WhereC represents integration constawhich needs to be defined from boundary conditions.
The contact arc is mathematically described by ®gueof a circle. After circle equation
nomination and its differentials into the differahteq. (1), remains only as a function of
coordinatex alone with direct stress, that ig, = f(s,,,X). The solution of such differential
equation is analytically unknown. In the literatueepossible to find more solutions of the
differential eq. (1), where authors establish i@ #guation certain simplificationshe simplest
solution was introduced by Korolev [5], while thentact arc (BA) is substituted by poly line
(BCC'A), seeFig.3 — curve 1.A more particular solution was introduced by TsaVik[6].
Contact arc (BA) has been substituted by straigie (BA), Fig.3 — curve 2. However,
implemented simplifications can not permit precidescription of normal contact stress
distribution acquired by measuring forces on rgllimills.

2 Solution of differential equation

The aim of this subscription is to further approatethe mathematical theory of rolling with
practice. The solution reposes in substitutioniafle arc (BA) meeting rolling material by the
parabola (BA)Fig.3 curve — 3, allowing the eq. (1) to be integratéd The parabola equation
is constructed in the way that it runs through p8irand has vertex in point A.

y=ax’+b (3)
where
a= AN p-h (), (5)

Com?
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Tselikov [6] substituted length variabteby angular variabla according to substitution

x=\/E[ﬂgu (6)
a

Parabola eq. (3) after application of new variabéssumes the form

y=brfg?u+1) (7)

Solution of differential eq. (2) needs definitiohdifferentialdx and ratiodx/y

dxz\/EE-I—du O du ®), (9)
acofu Yy Jab

Calculation of first integral for eq. (2)

%zLIduzmuu (10)

y ab

Where constamn is defined from relation

2f

m= (11)
J 4hhy
For second integral is needed to define differéiyaand ratiody/y
dy=20-9 rau , Y= 2tgure (12), (13)
cos“u y
Transformation of second integral on variable
o e[ix
.[73 Y my= zaajem“ (tguldu (14)

After establishing of a new variableinto second integral in eq. (2) a form is acquinetiich
according to [8] was given by Tselikov

op = €m“(c +20, IZJ. em Etgumu) (15)

where

u = arctg /A—h X | thatis u=arctg 1/i g (16)
h Ty l-g Iy

Fraction under root represents relative deformasidn eq. (15)top signs (+, —jn exponential
functions are valid for zone of forward slip andttbon signs (—, +) are valid for zone of
backward slip. In eg. (15) it is needed to deteartime function integrad™.tg u This integral
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can be determined under the assumptign = u. This inaccuracy can be allowed for in small
and medium deformation values. For zone of backwéid eq. (15) after reduction will have
the form

Ong = e‘m”((:B + 2an'e’"“ Eumju) (17)

After integral calculation

Ong = e‘m“[(:B +20, @™ Eéﬂ —iﬂ (18)

m m?

where: Cg is an integral constant, which is for the zonebatkward slip determined from
conditions in point B (se€&ig.1). For x=l4 from equation of plasticitys,z —o, =0, , where
o,=0 (without backward tension), resuliss= g,. Valueu=u, for x=lq4 results from eq. (16)

Ug = arctg(dﬁ} (29)

After substituting of boundary conditions in poBiinto eq. (18) integral constant is determined
Cg = zga[% - (ﬁ _iﬂemtb (20)

m m?

After substituting of integral consta@} into eq. (18) is determined an equation for thecpss
contact stresgrg calculation in the zone of backward slip

1 (u 1 . 1
O'nB:ZO'aH:E_(E_F\J}en(UO )+[%_F]} (21)

For the zone of forward slip will be used the edprat
oo = em“(cF + 2aaje‘m“ Eumu) 22)

After integration

O = e’“{CF -2, @™ Tk +i2ﬂ (23)
m m

whereCk is integral constant, which is for the zone ofafard slip determined by conditions in
point A (seeFig.1). For x=0 from equation of plasticity - —o, =0, , Whereg=0 (without
forward tension), results,= g,. Valueu=0 for x=0 results from eq. (16)

_ 1 1
Ce = 203(5+Fj (24)
After substituting of integral consta@k into eq. (23) is determined an equation for thecpss
contact stresegr, calculation in the zone of forward slip
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On = ZJ{(% + %)e’“u - [% +$ﬂ (25)

By this equation in Tselikov terminates his intetation regarding solution of differential eq.
(1) and contact pressure calculation. From litemgtthe calculation of average contact pressure
Ohav 1S NOt known from equations (21) and (25).

3 Neutral section

Based on present observations, the author submitsdaction of equation for the average
contact pressurer, 5, calculation, which requires position determinatmia neutral pointin
general, the neutral point N (sEag.3) is determined by comparison of right sides ofagiuns
(21) and (25). Value=u, is in this point determined by section margirtha zone of backward
and forward slip (neutral point)

O'nB(un) =0nr (un) (26)

Solitary coordinate, in these equations represents the variaplaccording to eq. (16)

u, = arctg ‘/i gl , Xp = 17e 0, Ogu, (27)
1-¢ ld &

The particular comparison of right sides of equaid21) a (22) results in transcendental
equation dissolution

o | LYo _ 1 Y famwun) [ Un _ 2 o5 (L T jomun (Yo, 1
Za{{z (m mzﬂe +(m mzj} Za[(2+m2je (m+mzﬂ (28)

From this equation it is needed to express thekbru,. By modification and gradual reduction
of equation in a way that constants are conceimtticbrackets

(o,5m2 -my, +1)Ee"(“0‘“n) —(o,5m2 +1)Ee”“h +2my, =0 (29)
DAD o UA
036 f"’_:_._____ -
< pan | i o
3 | —® 3
025 /" o F0A
0,20 —

B.1E V 10 02

= b

00 00
a 2 4 B By 10 12 q 1 2 3 4 oy B H

Fig.4 Dependence of the neutral valug on Fig.5 Convergence ratia,/up to the value 0.5
constanim and deformation
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Solitary valueu, is expressed by explicit functioR(me,u, ) =0. Therefore, to determine the
valueu, , a graph given oRig.4. has been worked out by numerical methods. A &tioeutral
valueu, to valueu, with the value growtim converges to 0.5, séeég.5

lim Y =05 (30)

m- oo uo

4 Average normal contact stress

Representation of the contact pressure procesg dlan contact act is presented Big.6.

Average normal contact stress,, is determined as average integral value of viialin the
interval u< O;u, >. The calculation needs to be implemented indepehdéor the zone of
backward and forward slip. Zone of forward sl@gs(u) eq. (25), foruin the interval
ul< O;u, >. Zone of backward sliprg(u) eg. (21), fou in the intervaluO<u, ;u, >

1 ¢ 1|7 e 1
Toay =~ o EU= 10 [ @BU+ [opa()du| == (fi +14] (31)
u u u
o 9 o |0 Un o
N
an(;y/ \c\snstu)
/ \

7
Omax

Onav

A A ——
//

Fig.6 Average normal contact stress,av

Ca

Xn

Ly

An integration boundary, represents a value which determines the positioa rdutral point
and is defined by the explicit eq. (29he value of integration boundany is given by the eq.
(19).For eq. (31) we will determine integrdjsalg

Un

lp = 'C[O'nF(U)U:O'a E'%K%Jf%]em% ‘(u—“'i)‘%(“r% +1)} (32)

m m m?
0 1 (u 1 ) (Ua 1)1
lB = v|‘0'nB(U)U=G'a %{[E_[E_Fj}ed% )+(E_F\J+E(UOZ _ur% _1)} (33)

Un

After substituting equations (32) and (33) into €8l) and a mathematical modification we
acquire an equation which describes the averageai@ontact stress, ,,

T na = aai{(H%] em —1)+%—un(un +%ﬂ (34)

mu, m
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For practical use is the e(®4) expressed as a relative strésswhich states ratio of the average
normal stressr, ., to actual deformation resistancgthat is¢ = ,,,/0, . The determination of

actual deformation resistance is described in [9-11

3 :i[ﬁ(l+%) fem -1)+%—un Eéun +%ﬂ (35)

mu, m

A visualization of the eq. (35) presented in graptrig.7. Curves in zon®<m<1 are not well
readable, therefore dfig.8 is given an expansion of this zowe-function, eq. (35) is in the
pointm=0 intermittent. The visualization is implementeddependence on value, while the
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Fig.7 Dependence of the neutral valug on Fig.8 Convergence ratia/up to the value 0.5

constanin and deformation

relative reductione is a parameterAs can be seen fronkig.8, ¢ —function has alocal
minimum, what is in accordance with practical meaments of average contact pressure. With
a reduction growth the position of local minimusn—function decreases and moves towards
higher valuesn. More detailed description of properties ®f-function is presented if12,13].
Empirical equations describing —function are well submitted by Hajduk and Koy [14].
Empirical functions of relative stress, that meaifiss —function are designed in dependence
d =a(l4/hy,.€) , however most often in forrd =a(l4/h,, ). Such dependence is described by
Rusz et all [15],where measured data accodot the local minimum, proved by e(35).
Validity verification of the eq. (34) has been implented on measured data from publication
Kvackaj et all [16].Under cold rolling sheet has been rolled with th&yethickness 0h,=0.65
mm, on one passThe material was dynamo steel C-Sihe roll diameter 210 mm.
Circumferential velocity 0.66 m/®ependence of measured and calculated resultsdiegdn

eg. (34)in dependence on ratig/h,, is presented ofrig.9. The graph is simultaneously for
comparison completed with values of the averagenabstress calculated according to Korolev,
Tselikov and author (eq. 34). The calculated vabfesontact pressure according to Tselikov are
by 50 % lower than the measured [16] in gross priago of ratio I¢/h,,. Contact pressure
calculated according to equation (34) and Korolesg la faster tendency of growth than the
actual measured values in [16]. All theoreticalcakdtions of contact pressure are strongly
dependant on correct estimation of friction coédfit. For the calculation of contact pressure in
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given proportion of ratidys/h,, onFig.9 is more suitable to use the equation (34) or atingrto
Korolev.

1600 ‘ I
hy=0.65 mm
1400 -

. D f21E ;nm 5 Korlolev
= =0, - |author

L 1200{— i “

H steel C-Si %4 measured
> L] Kvackaj
%1000 o 2
g = etall
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e
- |
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Fig.9 Average contact stress ., measured and calculated

5 Conclusion

Present theories, describing calculation of therapye normal stress are based on certain
simplified assumptions. This causes significanfedénces between the theory and measured
data. The submitted contribution increases connaeef mathematical theory of rolling with
the measured values of relative stress. Main duutton of the new hypothesis of the division of
contact pressure rests in the fact that it thezaliyi proves the existence of the local minimum
in the average contact pressure. The minimum isanminstant point, yet it is dependant on
relative deformation intensity. Equation (3®hich describes the relative stress, is function in
the forma =4 (l4/h,, &, f) . In comparison with empirical functions,—function allows also for
the friction coefficient impact on relative stre3selikov in [6] for the calculation of relative
stress at hot rolling in dependence on rhftn,, suggested 3 equatiorisquation (35)olves the
calculation of the average contact pressure in texnmeasure of ratit/h,,. The report brings
new knowledge in the area of mathematical theomplihg.

Translated from Slovak by Ida PiSova.
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