FRACTURE MECHANISM OF DISPERSION-STRENGTHENED $\text{Cu-Al}_2\text{O}_3$ NANOSYSTEM

M. Besterci¹⁾, O. Velgosová^{2)*}, J. Ivan³⁾, T. Kvačkaj⁴⁾, P. Kulu⁵⁾

- 1) Institute of Materials Research, Slovak Academy of Sciences, Košice, Slovak Republic
- ²⁾ Department Materials Science, Faculty of Metallurgy, Technical University, Košice, Slovak Republic
- 3) Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Bratislava, Slovak Republic
- ⁴ Department of Metals Forming, Faculty of Metallurgy, Technical University, Košice, Slovak Republic
- 5) Tallin University of Technology, Department of Materials Technology, Tallinn, Estonia

Received 21.03.2012 Accepted 14.09.2012

*Corresponding author: e-mail: oksana.velgosova@tuke.sk, tel.: 00421 55 602 2427, fax.: 00421 55 602 2428, Department of Materials Science, Faculty of Metallurgy, Technical University of Košice, Park Komenského 11, 04200 Košice, Slovak Republic

Abstract

The method of "in-situ tensile test in SEM" is suitable for investigations of fracture mechanisms because it enables to observe and document deformation processes directly, thank to which the initiation and development of plastic deformation and fracture can be reliably described. The deformation and fracture mechanisms of Cu-Al₂O₃ nanomaterials with 5 vol. % of Al₂O₃ phase has been analyzed using technique of the "in-situ tensile testing in SEM". It has been shown that the deformation process causes break-up of large Al₂O₃ particles and decohesion of smaller ones. The final fracture path is influenced also by boundaries of nanograins, through which the principal crack propagates towards the sample exterior surface. Based on the experimental observations a model of damage and/or fracture mechanisms has been proposed.

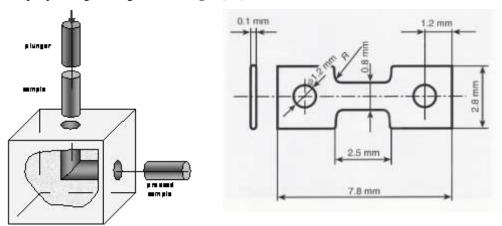
Keywords: dispersion strengthened Cu-Al₂O₃ composite; mechanical alloying; fracture mechanism

1 Introduction

The method of "in-situ tensile testing in SEM" is suitable for investigations of fracture mechanisms because it enables to observe and document deformation processes directly, by which the initiation and development of plastic deformation and fracture can be reliably described.

We have analyzed, as reported in [1-3] the fracture of $Cu-Al_2O_3$ and Cu-TiC systems by direct monitoring of the strain and fracture in a scanning electron microscope (SEM) (in situ tensile test in SEM). Both systems were prepared by different powder metallurgy technologies. The dispersed oxides and carbides in the matrix were not coherent. Differences in particle size and distribution caused differences in fracture mechanism, although both factures were ductile transcrystalline with dimples. The method of in situ tensile test in SEM is suitable for observation and evaluation of fracture mechanism directly under the load. This method was used for analyzing Al and Cu systems (Al-Al₄C₃ systems with different volume fraction of secondary

phase [4-6] and Cu-Al₂O₃ system [7, 8]), Al-Si-Fe alloys [9] and Al-Si system [10]. Fracture mechanism depends on many factors, for instance amount of dispersion particle, their shape and size, characteristics of matrix material, grain boundary characteristics etc. [11-16].


Owing to the excellent high-temperature properties and sufficiently high values of electrical and thermal conductivity, the dispersion-strengthened Cu-Al₂O₃ materials, prepared by the methods of powder metallurgy, have found use as conductors in electrical machines employed at high temperatures, in contacts, in electrodes and in vacuum technique parts.

The aim of work is to analyze fracture mechanism in the Cu-Al₂O₃ nanocomposite system with 5 vol. % of Al₂O₃ phase and to propose a damage model.

2 Experimental materials and methods

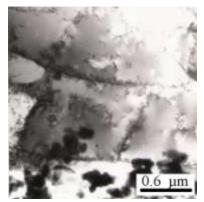
Reaction milling and mechanical alloying was used to prepare the samples. Cu powder with the calculated addition of Al was homogenized by attrition in oxidizing atmosphere. The distribution of the obtained CuO was uniform. A subsequent treatment at 750 °C induced the reaction of CuO with the added Al powder, and led to the formation of Al_2O_3 particles. The remaining CuO was reduced by attrition in a mixture of $H_2 + H_2O$ (rate 1:100). The powder was compacted by cold pressing and hot extrusion at 750 °C-800 °C.

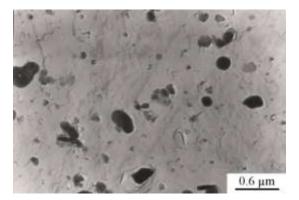
Microstructured material with 5 vol. % Al_2O_3 was transformed by the ECAP (Equal Channel Angular Pressing) method in two passes into a nanocomposite material. The experimental material was pressed through two right angled (90°) channels of a special die by route "C". The ECAP technology allows obtaining the very fine grained microstructure – nanostructure by multiple pressings through the die, **Fig. 1** [17].

Fig.1 Schema of ECAP [17]

Fig.2 The shape and dimension of a specimen

This material with dimensions of $\emptyset 10 \times 70 \text{ mm}$ was deformed by the ECAP technique in two passes at room temperature in a hydraulic press in the equipment described in [17].


For the purposes of investigation very small flat tensile test pieces, **Fig.2**, (7x3 mm, gauge length is 7 mm) with 0.15 mm thickness were prepared by electroerosive machining, keeping the loading direction identical to the direction of extrusion. They were ground and polished mechanically to a thickness of approximately 0.1 mm.


The final operation consisted in double-sided final polishing of specimens with an ion thinning machine. The specimens were ground and polished down to a thickness of approximately 0.1

mm. Finally, the specimens were finely polished on both sides by ion gunning. The test pieces were fitted into special deformation grips inside the scanning electron microscope JEM 100 C, which enables direct observation and measurement of the deformation by ASID-4D equipment. From each one of the systems five samples were prepared.

3 Results and discussion

The microstructure of the starting material with 5 vol. % Al_2O_3 was fine-grained (the mean matrix grain size was 1 μ m) **Fig.3**, heterogeneous, with Al_2O_3 particles distributed in parallel rows as a consequence of extrusion and ECAP. The experimental materials were deformed at 20 °C at a strain rate of $6.6 \times 10^{-4} \, \text{s}^{-1}$ in the elastic region. The replica is on **Fig. 4** and difractogram is on **Fig. 5**. Particles of size less than 0.25 μ m were classified as effective dispersion particles of category A, and particles of size greater than 0.25 μ m as particles of category B; the latter are ineffective from the point of view of strengthening; although they affect the deformation process and plastic properties. In addition to the particles mentioned, the material also contained impurities, which were introduced during the preparation process of the material.

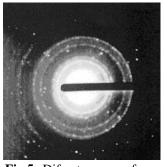
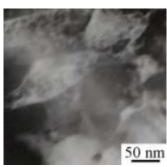

Fig.3 The microstructure of the starting material on thin foil

Fig.4 Replica of material with 5 vol. % Al_2O_3


The material after ECAP is on the border of nanostructured materials. The TEM micrographs, **Fig. 6**, showed that the mean grain size was 100-200 nm, small amount of dislocations are present in nanograins, too, but mostly on the boundaries. The nanostructure formation takes place most probably by a three-stage mechanism, described in [18-20]. This model has been experimentally verified only for several specific materials but in our case it seems to be probably usable. The model includes creation of cell structure, then formation of transitory cell nanostructure with large angle disorientation, and finally formation of nanostructured grains with size of approx. 100 nm. However, here one has to consider the retarding effect due to present dispersoid particles. The simulation and mechanical properties of Cu-Al₂O₃ system are described in [21].

Deformation process of the loaded layer causes fracture of large, B-type, particles in the middle of the specimen (**Fig. 7**), which initializes fracture path roughly perpendicular to the loading direction. The fracture path is determined also by decohesion of smaller particles (type A) (**Fig. 8**). Since the volume fractions of Al_2O_3 particles are small, their distribution in lines does

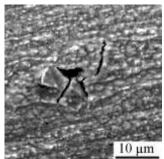

not influence the trajectory of fracture which has low relative deformation $\epsilon=0.1$. Unlike the microstructured Cu based composites, in this case it has been shown that the nanograin boundaries play an important role. In the final phase (**Fig. 9**) a crack propagates along the nanograin boundaries, which has been observed experimentally on the crack line (profile), and it is documented also by the ductile fracture surface with typical dimples in **Fig. 10**.

Fig.5 Difractogram of Al₂O₃ phase

Fig.6 The TEM micrographs **Fig.7** of the material after ECAP

g.7 Fracture of large (B)
Al₂O₃ particles in the middle of the layer

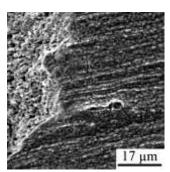
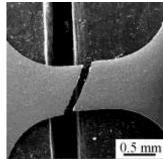



Fig.8 Decohesion of smaller particles category A

Fig.9 The final phase of the crack

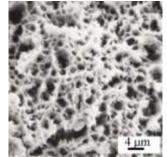
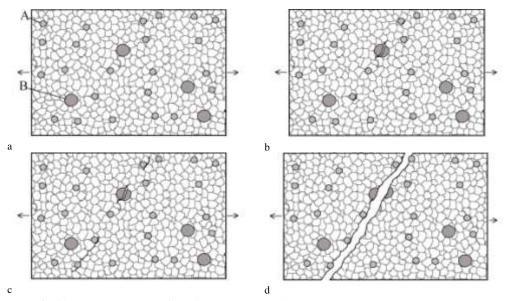



Fig.10 Surface morphology (dimples) of the material with 5 vol. % Al₂O₃

A detailed study of the deformation changes showed that the crack initiation was caused by decohesion, and occasionally also by rupture of the large particles. Decohesion is a result of different physical properties of different phases of the system. The Cu matrix has significantly higher thermal expansion coefficient and lower elastic modulus ($\alpha = 17.0 \text{ x } 10^{-6} \text{ K}^{-1}$, E = 129.8 GPa) than Al_2O_3 ($\alpha = 8.3 \text{ x } 10^{-6} \text{ K}^{-1}$ and E = 393 GPa). Large differences in the thermal expansion coefficients result in high stress gradients, which arise on the interphase boundaries during the hot extrusion. Since $\alpha_{\text{matrix}} > \alpha_{\text{particle}}$, high compressive stresses can be expected. However, because the stress gradients arise due to the temperature changes, during cooling (which results in increase of the stress peaks) their partial relaxation can occur. Superposition of the external load and the internal stresses can initiate cracking at interphase boundaries. This is in accordance also with the dislocation theories which argue that the particles in composite may cause an increase in the dislocation density as a result of thermal strain

mismatch between the ceramic particles and the matrix during preparation and/or thermal treatment. In our case, the coefficient of thermal expansion of the matrix is much higher than that of the secondary particles and the resulting thermal tension may relax around the matrix-particle interfaces by emitting dislocations, whose density can be calculated according to procedure described in [22].

Fig.11 a,b,c,d Model of the fracture mechanism

Based on the microstructure changes observed in the process of deformation, the following model of fracture mechanism is proposed (**Fig. 11**a,b,c,d):

- a) The microstructure in the initial state is characterized by Al₂O₃ particles, categorized as B.
- b) With increasing tensile load local cracks, predominantly on specimen side surfaces, are formed by decohesion of smaller A particles.
- c,d) In further increasing deformation of nanocomposite materials the nanograin boundaries start to play an important role. Since the volume fraction of these boundaries is high and the size of the B and A particles is equal to the matrix grain size, crack propagates preferentially along the nanograin boundaries in a 45° angle.

4 Conclusion

Based on the microstructure changes obtained in the process of deformation of the dispersion strengthened $\text{Cu-Al}_2\text{O}_3$ alloys a model of fracture mechanism was proposed. With increasing tensile load the local cracks, predominantly on specimen's side surfaces, are formed by rupture of large B and decohesion of smaller A particles. The orientation of cracks tends to be perpendicular to the loading direction, depending on the particle volume fraction. The final rupture, i.e. interconnection of the side cracks along the loading direction, takes place at nanograin boundaries, depending on the volume fractions of oxide (Al_2O_3) particles in a 45° angle.

References

- [1] M. Besterci, J. Ivan: Kovove Materialy, Vol. 35, 1997, No. 4, p. 278-284
- [2] M. Besterci, J. Ivan, L. Kovac, T. Weissgaerber, C. Sauer: Kovove Materialy, Vol. 36, 1998, No. 4, p. 239-244
- [3] M. Besterci, J. Ivan, L. Kovac: Materials Letters, Vol. 46, 2000, No. 2-3, p. 181-184
- [4] M. Besterci, J. Ivan: Journal of Material Science Letters, Vol. 15, 1996, No. 23, p. 2071-2074
- [5] M. Besterci, J. Ivan, O. Velgosová, L. Pešek: Kovove Materialy, Vol. 39, 2001, No. 6, p. 361-367
- [6] M. Besterci, O. Velgosová, J. Ivan, P. Hvizdoš, I. Kohútek: Kovove Materialy, Vol. 46, 2008, No. 3, p. 139-143
- [7] M. Besterci, J. Ivan: Journal of Material Science Letters, Vol. 17, 1998, No. 9, p. 773-776
- [8] M. Besterci, J. Ivan, L. Kovac: Kovove Materialy, Vol. 38, 2000, No. 1, p. 21-28
- [9] A. Mocellin, F. Fougerest, P.F.J. Gobin: Materials Science, Vol. 28, 1993, p. 4855-4861
- [10] R. Velísek, J. Ivan: Kovove Materialy, Vol. 32, 1994, p. 531-535
- [11] T. Kvackaj, J. Bidulska, M. Fujda, R. Kocisko, I. Pokorny, O. Milkovic: Materials Science Forum, Vol. 633-634, 2010, p. 273-302
- [12] H. Danninger, A. Avakemian, Ch. Gierl: Powder Metallurgy Progress, Vol. 11, 2011, p. 3-12
- [13] J. Bidulská, T. Kvačkaj, R. Bidulský, M. Actis Grande, L. Lityńska-Dobrzyńska, J. Dutkiewicz: Acta Physica Polonica A, Vol. 122, 2012, No. 3, p. 553-556
- [14] J. Bidulská, R. Bidulský, T. Kvačkaj, M. Actis Grande: Steel Research International, Vol. 83, 2012, SI, p. 1191-1194
- [15] S. Rusz, S. Tylšar, J. Kedroň, J. Dutkiewicz, T. Donič: Acta Metallurgica Slovaca, Vol. 16, 2010, No. 4, p. 229-236
- [16] A. Kovacova et al.: Acta Metallurgica Slovaca, Vol. 16, 2010, No. 2, p. 91-96
- [17] M. Besterci, O. Velgosová, J. Ivan, P. Hvizdoš, T. Kvačkaj, P. Kulu: Kovove Materialy, Vol. 47, 2009, No. 4, p. 221-225
- [18] R.Z. Valiev, I.V. Alexandrov: Nanostrukturnyje materiały polučennyje intensivnoj plastičeskoj deformaciej. Logos, Moskva, 2000
- [19] R.Z. Valiev: NATO Science Series II, 2003, p.79-84
- [20] R.Z. Valiev: Nanostructured Materials, Vol. 6, 1995, p. 73-82
- [21] M. Besterci, K. Sülleiová, T. Kvačkaj, R. Kočiško: International Journal of Materials and Product Technology, Vol. 40, 2011, No. 1/2, p. 36-57
- [22] P. Lukáč, Z. Trojanová: Kovove Materialy, Vol. 44, 2006, No. 5, p. 243-249

Acknowledgement

The work was supported by the Slovak National Grant Agency under the Project VEGA 2/0025/11.