Visits: 86002906
AMS now reading: 1




Year 2009 No 3

Oráč D., Hlucháňová B., Havlík T., Miškufová A., Petrániková M.
LEACHING OF ZINC AND COPPER FROM BLAST FURNACE DUST OF COPPER PRODUCTION OF SECONDARY RAW MATERIALS
Keywords: blast furnace dust|leaching|zinc|copper|secondary raw materials|hydrometallurgy|
No 3 (2009), p. 147-153
  mag01.pdf (142 kB)
mag01_eng.txt (1 kB)  

Janák G.
STRUCTURAL ANALYSIS OF TITANIUM COMPOUNDS IN BLAST FURNACE HEARTH
Abstract
This article presents investigation of titanium carbonitrides which are generated in blast furnace hearth in purpose of its protection against prematurely erosion. Adding titanium into blast furnace burden is highly effective way of prolongation of blast furnace campaign and is used in steel mills worldwide. It is done by deposition of titanium nitrides, carbides and carbonitrides on blast furnace hearth walls. Once titanium materials are charged into declining burden and increasing temperature then starts composite chemical and physical processes. Titanium oxides are reduced into metal titanium which precipitate into pig iron and react with carbon and nitrogen and titanium carbonitrides are formed which ensure protection of hearth by forming protective layer on it.
Charging of titanium bearing materials is important part of blast furnace control process and is necessery to be monitored. The optimal way is adding exact sufficient amount of titanium to create protective layer. This is monitored by thermocouples placed in hearth refractory.
Structure analysis of protective layer during campaign of furnace is possible only by laboratory prepared samples. Therefore examination of sample taken directly from blast furnace hearth during general repairing is unique to analyse structures of titanium compounds and other present phases created in blast furnace conditions.


Keywords: Blast furnace|titanium nitrides|titanium carbonitrides|hearth protective layer|
No 3 (2009), p. 154-160
  mag02.pdf (119 kB)
mag02_eng.txt (1 kB)  

Kamoďa O., Vadász P.
THE INFLUENCE OF SiC ADDITION ON CORROSION RESISTANCE OF MONOLITHIC REFRACTORIES BASED ON Al2O3-SiO2
Keywords: refractory castable|silicon carbide|static corrosion test|slag|incinerator of municipal waste|
No 3 (2009), p. 166-172
  mag05.pdf (147 kB)
mag05_eng.txt (2 kB)  

Demeter J., Kijac J., Velgos J.
WEARING MECHANISM OF REFRACTORY LINING IN BASIC OXYGEN FURNACE
Keywords: refractory lining|basic oxygen furnace|mechanism of wearing|gunning material|
No 3 (2009), p. 161-165, Vydáva abebooks
  mag04.pdf (53 kB)
mag04_eng.txt (2 kB)  

Némethová L., Kvačkaj T., Mišičko R., Pokorný I., Kovárová I.
STRUCTURAL CHANGES OF C-Mn-Nb-V STEEL DURING THE REHEATING
Keywords: HSLA steels|heating temperature|holding time|average austenite grain size (average AGS)|precipitation behavior|MATLAB|
No 3 (2009), p. 173-179
  mag06.pdf (223 kB)
mag06_eng.txt (2 kB)  

Straka Ľ., Čorný I.
HEAT TREATING OF CHROME TOOL STEEL BEFORE ELECTROEROSION CUTTING WITH BRASS ELECTRODE
Keywords: Electroerosion Machining|Quenching|Tempering|Heat Treating|Hardness of Surface|Wire Electrical Discharge Machining (WEDM)|
No 3 (2009), p. 180-186
  mag07.pdf (110 kB)
mag07_eng.txt (2 kB)  

Pariona M. M., Bertelli F., Cheung N., Garcia A.
MATHEMATICAL MODELING OF MOLD-FILLING AND SOLIDIFICATION OF CASTINGS: PART II – APPLICATION TO A CU 5%ZN ALLOY CASTING IN A SAND MOLD
Keywords: numerical simulation|finite-element method|mold-filling|solidification|Cu 5%Zn alloy|
No 3 (2009), p. 187-198
  mag08.pdf (785 kB)
mag08_eng.txt (1 kB)  

Pariona M. M., Bertelli F., Cheung N., Garcia A.
MATHEMATICAL MODELING OF MOLD-FILLING AND SOLIDIFICATION OF CASTINGS: PART I – THEORETICAL BASIS
Keywords: numerical simulation|finite-element method|mold-filling|solidification|heat generation|
No 3 (2009), p. 199-207
  mag09.pdf (130 kB)
mag09_eng.txt (2 kB)