Počet návštev: 86956950
AMS práve číta: 1




Ročník 2005 No 3

Dobrovský Ľ., Řeháčková L., Dobrovská J., Stránský K., Dobrovská V.
PREDIKCE ROZLOŽENÍ UHLÍKU VE SVAROVÝCH SPOJÍCH OCELÍ
K. s.: Quasi-stationary diffusion|welded joints of steels|interstitial elements|carbon|
No 3 (2005), p. 259-265
  mag01.pdf (172 kB)
mag01.txt (2 kB)  

Noga Z.
LABORATORNÍ PLAZMOVÉ ZAŘÍZENÍ PRO POLOKONTINUÁLNÍ TAVENÍ A ZPRACOVÁNÍ MATERIÁLŮ
K. s.: Development of research equipment|plasma torch|horizontal-vertical water cooled copper crucible|electric heating–treatment furnace|forming machines|
No 3 (2005), p. 266-276
  mag02.pdf (948 kB)
mag02.txt (2 kB)  

Kocich R., Greger M.
VÝVOJ STRUKTURY A MECHANICKÝCH VLASTNOSTÍ U HOŘČÍKOVÉ SLITINY AZ 91 PŘI POUŽITÍ ARB PROCESU
K. s.: Plastic deformation|grain size|magnesium alloy|mechanical properties|
No 3 (2005), p. 277-283
  mag03.pdf (735 kB)
mag03.txt (1 kB)  

Szurman I., Kursa M.
VLIV PODMÍNEK PŘÍPRAVY NA STRUKTURNÍ CHARAKTERISTIKY SLITIN NI-TI
K. s.: Ni-Ti shape memory alloys|plasma melting|vacuum induction melting|
No 3 (2005), p. 284-292
  mag04.pdf (539 kB)
mag04.txt (1 kB)  

Smíšek V., Kursa M.
MOŽNOSTI OVLIVNĚNÍ LAMELÁRNÍ MIKROSTRUKTURY SLITINY TI-46AL-5NB-1W POMOCÍ SMĚROVÉ KRYSTALIZACE
K. s.: titanium aluminide|directional solidification|directional crystallisation|microstructure|
No 3 (2005), p. 293-300
  mag05.pdf (413 kB)
mag05.txt (1 kB)  

Bujnošková K., Drápala J.
SEGREGAČNÍ JEVY VE VYSOKOTAVITELNÝCH KOVECH BĚHEM ZONÁLNÍHO TAVENÍ
K. s.: Segregation|refractory metals|molybdenum|tungsten|segregation coefficient|concentration undercooling|convection|
No 3 (2005), p. 301-310
  mag06.pdf (308 kB)
mag06.txt (2 kB)  

Bystrianský J., Siegl J., Haušid P., Strnadel B.
TEPELNÁ ÚNAVA KOROZIVZDORNÝCH OCELÍ
K. s.: Stainless steel|thermal shock|thermal fatigue|fatigue crack|thermal cycle|
No 3 (2005), p. 311-322
  mag07.pdf (2 MB)
mag07.txt (2 kB)  

Bystrianský J., Siegl J., Haušid P., Strnadel B.
TEPELNÁ ÚNAVA KOROZIVZDORNÝCH OCELÍ
K. s.: Stainless steel|thermal shock|thermal fatigue|fatigue crack|thermal cycle|
No 3 (2005), p. 311-322
  mag08.pdf (2 MB)
mag08.txt (2 kB)  

Sojka J., Jonšta P., Rytířová L., Sozańska M., Jerôme M.
VLIV MIKROSTRUKTURY NA SULFIDICKÉ PRASKÁNÍ POD NAPĚTÍM ZA TEPLA VÁLCOVANÝCH TRUBEK
K. s.: Sulphide stress cracking|carbon steel|segregation bands|hydrogen permeation|
No 3 (2005), p. 332-330
  mag09.pdf (865 kB)
mag09.txt (2 kB)  

Schindler I., Fiala J., Černý L., Kohut J., Kozelský P., Suchánek P.
DEFORMAČNÍ CHOVÁNÍ A VÝVOJ MIKROSTRUKTURY PŘI VÁLCOVÁNÍ PÁSU Z FERITICKÉ KOROZIVZDORNÉ OCELI 13CR25 ZA TEPLA
K. s.: High-alloy ferritic steel|hot strip rolling|simulation|recrystallization|recovery|grain size|mean equivalent stress|
No 3 (2005), p. 331-340
  mag10.pdf (1 MB)
mag10.txt (1 kB)  

Fabík R., Kliber J.
INVERZNÍ VÝPOČET SOUČINITELE PŘESTUPU TEPLA PRO SIMULACI KALENÍ KOLEJNIC
K. s.: cooling curves|inverse analysis|FEM|heat transfer coefficient|
No 3 (2005), p. 341-350
  mag11.pdf (1 MB)
mag11.txt (2 kB)  

Heger M. , Schindler I., Franz J., Špička I., Turoňová P., Černý L.
MOŽNOSTI VYUŽITÍ POČÍTAČOVÉ ANALÝZY OBRAZU PŘI ŘEŠENÍ NĚKTERÝCH ÚLOH SOUVISEJÍCÍCH S TVÁŘENÍM MATERIÁLŮ
Abstrakt
Na počátku byly úlohy počítačového rozpoznání obrazu zaměřeny převážně na rozpoznání písmen, podpisů a podobně. Teprve později byly řešeny i složitější úkoly. V současnosti umožňuje počítačová analýza obrazu řešit dokonce úlohy spojené s měřením a řízením technologických procesů. Článek ukazuje možnosti aplikace výše uvedené metody pro některé úlohy spojené s procesy tváření materiálu. Máme zde na mysli počítačovou analýzu klínové zkoušky tvařitelnosti při válcování za tepla a úlohu určování teplot vysoce ohřátých materiálů. V procesu určování teplotních polí povrchu zkoumaného objektu je použita analýza barev obrazu objektu a pro jejich vyhodnocení jsou zde použity algoritmy umělé neuronové sítě. Výhody prezentované metody spočívají v dostupnosti, dobré přenositelnosti a možnosti monitorování teplotních polí v místech, která jsou pro operátora těžko přístupná. Z analýzy měření je pak možné určit vhodné možnosti použití různých zařízení pro daný účel, pracovní oblasti a zákonitosti, které mohou měření ovlivnit. Chyby určování teplotního pole se v praxi pohybují do 10 °C. Zvýšení přesnosti metody je dále možné rozšířením vstupů neuronové sítě o doplňující informace jako je například typ osvětlení objektu a podobně. Modifikace výše zmíněné metody dovoluje s dostatečnou přesností odečítat také termogramy a jiné tištěné mapy skalárních veličin vyjádřených pseudobarvami (např. rozložení napětí v materiálu atd.). Využitím počítačové analýzy obrazu pro určení obrysu vyválcovaného materiálu se stává klínová zkouška velmi účinnou, protože přiřazení odpovídajícího průřezu klínu a vyválcovaného vzorku je velmi přesné, což umožňuje významně zlepšit výsledky výpočtů deformačních parametrů.

K. s.: Rolling|equivalent strain|strain rate|computer analysis|
No 3 (2005), p. 351-361
  mag12.pdf (1 MB)
mag12.txt (2 kB)  

Kubina T., Schindler I., Heger M., Plura J., Bořuta J., Dänemark J., Hadasik E.
STATISTICKÉ SROVNÁNÍ ROZDÍLNÝCH POSTUPŮ PŘI VÝPOČTU PARAMETRŮ POPISUJÍCÍCH DYNAMICKOU REKRYSTALIZACI
K. s.: Activation energy|hot forming|steel|dynamic recrystallization|
No 3 (2005), p. 362-368
  mag13.pdf (332 kB)
mag13.txt (1 kB)  

Lasek S., Drápala J., Urbaníková Ž., Blahetová M.
POROVNÁNÍ KOROZNĚ ELEKTROCHEMICKÝCH VLASTNOSTÍ VYBRANÝCH BEZOLOVNATÝCH PÁJEK
K. s.: Tin alloys|lead-free solders|electrochemical corrosion|potentiodynamic polarization method|
No 3 (2005), p. 369-374
  mag14.pdf (220 kB)
mag14.txt (2 kB)